If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2h^2+8h+3=0
a = 2; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·2·3
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*2}=\frac{-8-2\sqrt{10}}{4} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*2}=\frac{-8+2\sqrt{10}}{4} $
| 1/2+p=17/18 | | X+8/20=2x-5/22.5 | | -5x-100+40-3x+80=180 | | 1/2+p=17/8 | | 1/2+x=17/8 | | n/3=9/12 | | 5x^2-25=15 | | x+844=1260 | | m+1.9=17 | | 3r^2-9r+4=0 | | 20x.12=80 | | 0=-6m+18 | | 3/4x=x+12 | | 2u^2-6u+2=0 | | b/5+3=-1 | | -3x+6+x=2 | | −6x+1=−4x−15. | | 9^m=1/81 | | 0.33(9x-30)+5=16 | | w/5+w=20 | | 6(4-x)=4(2-x) | | 1/3(9x=30)+5=16 | | 11m-8/6=16 | | 2(x-4)=-(x-7) | | -2(1.6-3)+x=2 | | -2(1.6-3)+x=3 | | B-(0.17b)= | | 2x+15x=51 | | -9x+7=-2x-7 | | y=49+11 | | 0.4-y=-17.6 | | y=15+7 |